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A METHOD OF SYMMETRIZING FUNCTIONS AND ITS APPLICATION 
TO CERTAIN PROBLEMS IN ELASTICITY THEORY FOR NON-UNIFORM BODIES* 

S.R. BRUDNYI and E-1, SHIFRIN 

A symmetrization operation is introduced for functions defined in bounded 
domains and vanishing on the boundary. The properties of the operation 
introduced are studied and its connection with Schwarz symmetrization is 
analysed. Examples are considered of the application of the apparatus 
developed for constructing isoperimetric estimates in problems of the 
torsion and longitudinal vibrations of an inhomogeneous rod. The stiff- 
ness estimate obtained in the problem of the torsion of a non-uniform 
rod is a generalization of the Polya isoperimetric inequality known in 
the theory of elasticity fox the stiffness of a uniform rod under torsion. 

The solution of many problems in the theory of elasticity encounters 
serious mathematical difficulties. Nevertheless, it is not so much the 
stress and displacement fields that are often of practical interest as 
are certain of their integral characteristics (for instance, the stiffness 
of an elastic rod under torsion, the frequency of the fundamental of the 
natural vibrations of a membrane, the first critical force of a com.- 
pressed rod, etc.). In a number of cases they have been successfully 
estimated without finding the complete solution of the problem. AmOn 

all the possible estimates, the most effective ones are the isoperimetric 
estimates in which the desired quantity is estimated in terms of the 
appropriate characteristic of the solution of the simpler problem that 
allows an analytic or effective numerical solution. 

The construction of isoperimetric inequalities for the solutions of 
boundary value problems is based, as a rule, on the application of Steiner 
or Schwarz symmetrization operations for function level lines /l/ which 
retain the L,-norm of the functions and do not magnify the corresponding 
norm of its gradient. This apparatus turns out to be effective for con- 
structing estimates of solutions of a certain class_of differential 
equations with constant coefficients ,/l/ and variable coefficients in the 
smallest terms /2, 3/. Utilization of Steiner and Schwarz symmetrization 
also enables isoperimetric inequalities to be obtained for a certain type 
of pseudodifferential equation /4/. However, the methods developed in 
/l-4/ do not enable estimates to be obtained for solutions of boundary 
value problems for differential equations with variable coefficients in 
the hiqhest derivatives, and it is such equations that are encountered in 
elasticity theory problems for non-uniform bodies. The reaeon for the 
difficulties occurring here is that the &-norm must be estimated for 
the gradient containing weight functions. Standard symmetrization 
operations of function level lines transform its gradient in an arbitrary 
manner, whereupon effective reconstruction of the weight function in the 
symmetrized domain is not successful and, therefore, neither is the 
required estimate. 

Below we propose a new symmetrization operation that enables the 
above-mentioned difficulty to be overcome and examples of its application 
are examined. 

1. Definition. Let a function f(x) be defined in a bounded domain GE El", possess a 
summable modulus of the gradient in this domain, and vanish on its boundary aG. Let K be a 
sphere whose volume equals the volume of G while the centre is at the origin, g (x) = g (r) is 
a function defined in K, equally measurable with IVf(x)l and no decreasing as the radius t= 
1x1 increases. We define the function 
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in the sphere K, where R is the radius of the sphere K. We will call the operation of settinq 
the function f(x) in correspondence with the function F(r) the SE-symmetrization of thi, 
function f, and use the notation SE (I). 

We recall that the functions A (x) and B (4 are called equally measurable if Vu, h 
measures of the sets {X: a < A (x) < ?I} and {x: a< B (X)< 0) are equal. 

We will examine the properties of the function SE (f) constructed. It is spherically- 
symmetric SE (f) (.r) = SE (f) (r), where SE (~)(~) I= 0, i.e., SE (f) vanishes on the boundary of 
the sphere K. Moreover 

I VSE (0 (x)1 = I dSE (f) G-)/h I = g (r) 

Therefore, the functions j V SE (f) (x) I and I V/(x)1 are equally measurable, 

Theorem 1. 

Proof. We first note the following fact. Let A (I‘) be a spherically-symmetric function 
defined in a sphere K of radius R, where A (R) = 0 and A (F) does not increase asrincreases. 
Then the following representation holds: 

J.4 (F) = c, i P-l j A' (t) 1 dt, 
; 

c, = ns, (1.3) 

(s,, is the volume of the unit sphere in Rn). The validity of (1.2) can be proved by integration 
by parts. Expression (1.3) is obviously equivalent to the following: 

Ja (P) = jivn ix)/ dx, L,=@=K:p<;<Rj (1.4) 
‘!I 

Let S(f)(x) 1 S(f)(r) denote a function defined in K and the result of application of the 
Schwarz symmetrization operation to the function If (41 /I/. As is well-known /l/ 

It follows from the properties of the function SE(f) considered above and the known 
properties of the function S (f)/l/ that the representation (1.2) is valid. 

Let s (j)(p) = x. Since S (I) (r) is a non-increasing function of the radius I‘, the set 
D = {X E Ii: S (I)-< x} is identical with the ring LO. Hence, takiny (1.4) and the properties 
of the Schwarz symmetrization operation /li into account, we have 

JSU) (P) = $ I ‘?S (f) I dx < i I vf (4 ldx 

w = {x ~zc: 1 f (x) ] < xl 

(1.6) 

Note that the measures of the sets a and w are equal. Since the functions j VS&'(j)(X) / 
and / uffx) j are equally measurable by construction and 1 VSE (ff (I) / does not decrease as r 
increases, we have 

JSE(I) (P) = 
d 

I VSE (f) (r) I dx ,2 j I vf (x) / dx 61.7) 

It follows from (1.6) and (1.7) that 

JSEU) (4 > JSU, (r), Vr E f0, RI 0.8) 

Hence, taking account of the representation (1.2) for the functions SE (f) and S (f) and 
using (1.5) we obtain the inequaiity (1.1). 

Remark 1. It does not follow from the theorem proved that SE (j)(r)23 (f)(r) and this 
inequality is not satisfied in the general case. However, in the one-dimensional cast? II = 1 



it does hold. In fact, for n = 1 it follows from the definition of the 
Jstn that they simply agree with 2SE(f)(r) and 2s (j)(r), respectively. 
virtue of (1.8) 

5% (f) (T) > S (I) (P), Vr E [O, RI, n = I 
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functions JOE and 
Consequently, by 

(1.9) 

The following indicates the possibility of violating inequality (1.9) for n> 2 

Lemma. Let f (x) = f (r) be a non-negative, monotonically decreasing function of rdefined 
in a sphere of radius R and vanishing on its boundary. Then for n>s 

S (f) (00) 2 SE (f) (0) (1.10) 

Proof. Obviously S U)(r)=~(r) and 

S(f) u-0 = SI R yfy dr I 
II 

On the basis of (1.3) 

1 dS ~)(r)/dr 1 = -(en-Y”+‘) dJscft (r)/dr 

Substituting (1.12) into (1.11) and integrating by parts, we obtain 

s (f) (0) = g-1 [(n-l)f$- - S(f) (0) - IS(f) w dt + IS(f) (O) 
p-1 I 

0 

We similarly obtain 

(l.li) 

(i.i2) 

(1.13) 

(1.14) 

Since Ise(,l (O)=J,,f,(O) by construction and the inequality (1.81 holds, inequality (1.101 
follows from (1.13) and (1.14). 

If the function f (4 under consideration is not invariant under SC-symmetrization, then 
in a certain set 6C [O,Rj JsE(f) (r)>JstIl(r) and therefore, the strict inequality S (f)(O)> 
SE (f) (0) is satisfied. 

Remark 2. Let a non-negative function f that vanishes on aG be defined in the domain 
GER”. This function yields a certain surface in the space I?"+'. Consider 
T,E Rn+l formed by the surface f and the domain G. 

the body 
Its volume Y, and the surface area S, 

are found from the formulas 

v,= f(x)& 

6 

s,= 

5 

11+ I/l+Iyfl"ldx 

We apply SE-symmetrization to the function f(x). Consequently, we obtain an axisymmetric 
body T,E Rn+r formed by the surface SE(f) and the sphere K, whose volume V, and surface 
area S, are expressed in the form 

It follows from the properties of SE-symmetrization examined above that Vg)VI,SI = Si. 
Therefore, SE-symmetrization of the body T, (in the above-mentioned sense) conserves the 
surface area and does not reduce its volume. 

It is interesting to compare the body To and the body T, formed by the surface 8 if) and 
the sphere K. According to the well-known properties of the Schwarz symmetrization operation 
/l/, the volume V, and the surface are S, of the body TB are related to the corresponding 
characteristics of the body TI as follows: V,= V,, S,<&. In other words, the volume is con- 
served and the surface area is not increased when constructing the body T, by using Schwarz 
symmetrization. 

By virtue of (1.91, the relation T,CT% holds in the case nt= 1, 

2. We consider certain examples illustrating the possibility of applying SE-symmetrization 
toobtainisoperimetric estimates. 

Pure torsion of an inhomogeneous rod of simply-connected section. This problem reduces 
to solving the equation /5/ (p (x) is the shear modulus, GERM is a simply-connected domain) 
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(~@,1),1 -t (d,,),, = -2, x E G, Q, /<x =z 0 
v (x) ::: p-1 (x), 0 < p (x) < 03 

The rod stiffness under torsion is expressed by the quantity /S/ 

(2.1) 

c-2 pD(x)dx 
i: 

Theorem 2. The stiffness under torsion of a non-uniform rod of simply-connectedsection 

does not exceed the stiffness of a circular rod of the same sectional area witha shear modulus 

equally measurable with the original modulus, axisymmetric and non-decreasing as the radius 

increases. 

(This theorem generalizes the isoperimetric theorem of the theory of the torsion of 

uniform rods /l/ in a natural manner). 

Proof. The solution of problem (2.1) yields a maximum of the functional 

where V,,, = C /5/. Let y0 (x) be a function equally measurable with the function v(x) and 

oppositely directed to the function 1 V@(x) 1, where m(x) is the solution of problem (2.1). 

We recall that the functions A (X)and 13 (x) are called codirectional if 

F (X,, Xz) = IA (Xl) - A (X2)1 IB (xl) - B (x2)1 > 0, VX,, x2 (2.3) 

and oppositely directed if F(x,,x,)< 0 /l/. 
Since the function Y,,(X) is oppositely directed to 1 V@ (x) 1, then in the general case 

it can be represented in the form Y" (x) = VI (I 00 (x)1) /U. 
Later we shall use the following property of codirected and oppositely directed functions 

/1/. Let the functions f and 4 be defined and non-negative in the domain c? E R". Then 

where f+ and g* are equally measurable with f and g, respectively, on B and f, is codirec- 

tional with g, while f_ and g_ are oppositely directed. 

On the basis of this property 

Hence and from (2.2) it follows that 

&4i@dx- \‘v(x)/r~,(x)I”dx,<4S~dx--Sv,(x)/~d,(x)l’dx 
G i: G c: 

Since @ (8~ = 0, SE-symmetrization is applicable to the function (1). We also transform 

the non-uniformity function. We define the function v*(x) in the circle K as follows Y,(X) = 

v* (r), which is equally measurable with the initial function v(X) and does not increase as 

the radius r increases. Then by construction 

i v. (xl I r@ (x) I2 dx = i v* (r) I VSE P) (4 I2 dx 

By virtue of Theorem 1 

On the basis of (2.4)-(2.6) we have 

c<.@q@,)(r)dx- J'~*(~)/VSE(~)(r)12dx,< 
h li 

(2.5) 

Here c, is the stiffness under torsion of a circular rod with shear modulus IL* (r) = I/ 
v* (r). The function p*(r) is obviously codirectional with r, i.e., does not decrease as the 

radius increases. 

We note that the estimate obtarned is simultaneously also the solution of the corresponding 
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optimization problem on the selection of the shape of the section of a twisted rod and the 

most logical distribution of the non-uniformity. 

Longitudinal vibrations of an non-uniformity elastic rod. The equation and boundary 

conditions describing the longitudinal vibrations of an elastic rod with clamped ends and 

density P (x), Young's modulus E(r) and sectional area F(r) variable over the length have the 
form /6/ 

dz 
d [Q(x)$] +hM(x)y(x)=0, Y(--I)=Ym=o 

Q(r)=E(r)F(z), M(2) =p (r)F(4 

(2.7) 

where 21 is the rod length and h is the square of the natural frequency. We call the function 

Q (4 the generalized stiffness and M(x) the generalized density of the non-uniform rod. 

It is well-known /6/ that the square of the fundamental frequency (the minimal frequency) 

of the natural vibrations w can be defined as follows: 

W= 
V(X). o(!l:fa(r)=a 

tQ (x) [duldrl’) 
0’ (2) +w (2.8) 

Here and henceforth the angular brackets denote integration with respect to x in the 

segment [A, 21. 

Theorem 3. Among all the equally-measurable distribution functions of the generalized 

stiffness Q(x) and density M(x) for longitudinal vibrations of a non-uniform elastic rod 

with clamped ends, the minimum frequency of the fundamental of the natural vibrations corre- 

sponds to the case when Q(z) and M(x) are symmetrical about the middle of the rod and do not 

increase during motion from the middle to the ends of the rod. 

Proof. Let r~ (x) be the eigenfunction corresponding to the fundamental frequency for 

Q (4 and M (4 

0 = <Q (4 [~Y/~xI~> i <M (4 Y* (I)> (2.9) 

and let the functions Qo(z) and Q(I),M~(I) and M(x) be equally-measurable, where Qo (4 
is oppositely directed to 1 dy/dx 1 and M,(m) is codirectional with 1 y(x) I. By virtue of 

the property mentioned above we have 

m > qolmO, q. = <Q. (4 MY 1 d2>, m, = Of, (4 ya (x)> (2.10) 

We construct the functions Q, (I) and M,(z), which are equally measurable with the 
original functions Q(X) and M(x), respectively, symmetrical about the middle of the rod 
and non-increasing during motion from the middle to the ends of the rod. Then, by construction 
and by virtue of (1.9) 

q,, = <Q* (I) [CUE (Y) (4 / dxl*> 

m, = (M, L!J (y) (x)1’> < Of, (4 [SE (Y) (x)1*) 

Taking (2.10) into account, we finally obtain 

(2.11) 

where W* is the square of the fundamental frequency of the natural vibrations corresponding 

to the distribution of inhomogeneities of the form Q, (4. fif, (4. 
We note that the eigenfunction y*(r) corresponding to the fundamental frequency T/G 

is invariant under SE-symmetrization. Indeed, in the opposite case it could yield a minimum 
of the functional (2.11) since application of the SE-symmetrization operation to it does not 

increase the value of the functional. 

Theorem 3 generalizes the results of /2/ in which analogous inequalities are obtained in 

the case when only the density is inhomogeneous while Young's modulus and the sectional area 

are constant along the rod length. 

Remark 3. The following theorem can be proved by a slight modification of the symmetriz- 
ation operation introduced above. 

Theorem 4. Let the surface S, bound a domain G,C Rn and let a surface S, bound a 
domain G,c Rn, where G, c Gz. In the domain G,\G, we consider the boundary value problem 

V.(k(x)VU)=O, x=Gp\G1, k(x)>0 (2.12) 

u Is, = 0, u I& = 1 



The quantity 

is investigated, where Lro(x) is a solution of (2.12). The following assertion holds: among 

all the surfaces S,,S2 bounding the domains G,,& of a given volume, and among all the equally 

measurable functions k(x), the minimum I(k(x),G,,G,) is reached in the case when G,,G, are 
concentric spheres, and the function k(s) is defined in a spherical layer G, \ G, which is 

spherically symmetric and does not decrease as the radius increases. 

The boundary value problem (2.12) is encountered, say, in problems of a steady-state 
temperature of diffusion distribution for non-uniform heat conduction or permeability, respect- 

ively,of the medium. The quantity I(k(x),G,,G,) characterizes the heat or mass flow through 

the surface S,. 

Mathematically, Theorem 4 generalizes the isoperimetric inequality for the electrostatic 

capacitance /l/ corresponding to the case k (x) = const. 
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SOLID PHASE SEEDS IN A DEFORMABLE MATERIAL* 

L.B. KUBLANOV and A.B. FREIDIN 

An equilibrium solid phase see in a linearly elastic medium is considered. 

The problem of a medium with new phase equilibrium domains is reduced to 
equations of elasticity theory for an inhomogeneous medium with a special 

kind of definite "phase" deformation under an additional phase equilibrium 

condition /I/ that imposes a constraint on the shape of the phase boundary. 

An ellipsoidal inclusion of an anisotropic phase is considered in an 
unbounded isotropic medium in a homogeneous external field of stress. It 

is proved that the tensor being defined by the phase deformation, by a 
change in the elastic moduli and stresses within the inclusion and having 

the meaning of a density tensor for dislocation moments indiced by a new 
phase domain, is global in the case of an equilibrium inclusion. The 
stress fields in an equilibrium two-phase configuration (TC) are determined 

by this characteristic property; the surface of the equilibrium ellipsoid 

turns out to be a surface of equal and constant principal values of the 

jump of the stress tensor and the constant principal value of the jump of 
the strain tensor. The stress perturbation tensor deviators within the 
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